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Abstract. On the basis of the approach of Eriksen and Kolsrud, we derive a canonical 
transformation which diagonalises the Dirac Hamiltonian for a particle interacting with 
an external electromagnetic field. We show that an explicitly gauge invariant electromag- 
netic interaction can be obtained without recourse to the l/m expansion. When expanded 
in I /  m, our result coincides with the Foldy-Wouthuysen interaction. 

1. Introduction 

In 1950 Foldy and Wouthuysen [ l ]  first showed that it is possible to diagonalise the 
Dirac Hamiltonian for a fermion interacting with an external electromagnetic field. 
By means of successive canonical transformations order by order in the reciprocal of 
the mass m, they found a representation in which the positive- and negative-energy 
components are decoupled. The Foldy- Wouthuysen representation is advantageous 
in interpreting the physical content of the Dirac equation in conformity with classical 
electrodynamics. Among other things it preserves the invariance under the local gauge 
transformation. Its virtue, however, is somewhat diminished by the fact that the 
transformation is not known in a closed form. When one goes to higher orders in 
1/ m, the procedure becomes intractably complicated. 

On the other hand, Eriksen and Kolsrud [2] have proposed a different expansion 
scheme in powers of the electric charge e. The diagonalisation of the Dirac Hamiltonian 
is accomplished order by order in e. The advantage of their approach is that the l / m  
expansion is not required. Their final expression, when expanded in l /m,  however, 
does not coincide with that of Foldy and Wouthuysen. Thus the gauge invariance 
does not manifest itself in Eriksen and Kolsrud. 

The disagreement between the two approaches is not surprising. There was much 
controversy about the ambiguity in diagonalising the external-field Dirac Hamiltonians 
[3-61. It is now well recognised that the canonical transformation which brings the 
Dirac Hamiltonian into an  even form cannot be determined uniquely. The fact is that 
long before the debate began, Eriksen and Kolsrud had noticed the non-uniqueness 
of the transformation and  presented various unitary operators which, as they admit, 
are different from Foldy and Wouthuysen. Barnhill [3] argued that the requirement 
of gauge invariance leads to a unique choice for the canonical transformation. However, 
in principle it is possible to use a representation which is not gauge invariant explicitly. 

Moreover, a question was raised as to the gauge invariance of the Foldy- 
Wouthuysen interaction. Nieto [4] and Goldman [ 5 ]  pointed out that the explicit 
gauge invariance of the transformed Hamiltonian should not be expected in the 
time-dependent external electromagnetic field problem. In fact, when one separates 
the entire coupled-field Hamiltonian into a particle Hamiltonian and  a radiation field 

0305-4470/87/020389 + 08%02.50 0 1987 IOP Publishing Ltd 389 



390 K Ohta 

Hamiltonian, the transformed particle Hamiltonian cannot be equivalent to the original 
Dirac Hamiltonian in the sense that the energy expectation values are not the same 
in the two representations. This does not invalidate the attractive feature of the 
Foldy-Wouthuysen representation. As suggested by Woloshyn [6], the Foldy- 
Wouthuysen interaction gives the correct results when one uses it in the calculation 
of the S matrix. Thus the explicit gauge invariance of the Foldy-Wouthuysen interac- 
tion, if interpreted correctly, remains a strong point. 

To summarise the above discussion, we find that a canonical transformation is 
proposed by Eriksen and Kolsrud in a closed form but in a gauge-variant way, whereas 
the gauge-invariant Foldy-Wouthuysen interaction is known only in an infinite series 
of l / m  expansion. The purpose of this paper is to derive a canonical transformation 
which furnishes us with an explicitly gauge-invariant electromagnetic interaction. We 
d o  not use a l / m  expansion, however. In W 2 we start from the brief review of the 
approach of Eriksen and  Kolsrud and in § 3 we seek the canonical transformation that 
makes the Eriksen-Kolsrud interaction manifestly gauge invariant. In § 4 our new 
interaction is compared with the Foldy-Wouthuysen representation. Finally in 3 5 we 
discuss the implications of our approach. 

2. The approach of Eriksen and Kolsrud 

Consider the Dirac equation 

i ia/at)4, ,= H D 4 ~ ~ = ( H ~ + e H l ) 4 D  (2.1) 

where Ha is the free particle Hamiltonian 

Ho = a - p + pm ( 2 . 2 )  

H, = - C Y  * A + $  (2.3) 

and H, is the electromagnetic interaction 

due to the external vector and  scalar potentials A and 4 evaluated at the position of 
the particle. An arbitrary transformation U converts HD into 

H = UH,U-’- iU(a /a t )U-’ .  (2.4) 

[P ,  HI = 0 ( 2 . 5 )  

The requirement that the new Hamiltonian H be an even operator is 

i.e. 

i (a /a t )A+[A,  H,] =O. (2.6) 
Here A is defined by 

A = U - ‘ P  U. (2.7) 
Eriksen and  Kolsrud expanded .\ in powers of e: 

A = A. + e A + e’ Az + . . . . ( 2 . 8 )  
The first term A. corresponds to the unitary transformation 

uo= [ ~ E ( E  + m ) ] - ” ’ ( ~  + P H , )  (2.9) 
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which diagonalises the free particle Hamiltonian Ho.  E is the operator 

E = ( p 2 +  m2)"*.  (2.10) 

Using (2.9) A. is given by 

A ~ =  E-'H,,. 

i@ldt)Al +[AI, Hal+ [A09 H11= 0 

A I ,  A 2 ,  . . . are determined by the equations 

etc. Equation (2.12) can be solved formally: 

(2.11) 

(2.12) 

A F = O  (2.13) 

A f = 2 i A o  dt'exp[iH,(t'- ?)]If; exp[-iHo(t'- t)]. (2.14) 

Hy in the integrand should be evaluated at time t' .  Use was made of the fact that any 
operator 0 can be decomposed into 0' and 0": 

II, 
0' = ;( 0 + AoOAo) 

0" = 'I( 0 - AOOAO). 

(2.15) 

(2.16) 

Eriksen and Kolsrud proposed various solutions to the canonical transformation 
U. Here we only refer to the transformation in the closed form 

U = uo(AO'\)"*. (2.17) 

This brings us to the new Hamiltonian 

H = P E +  Uo{eH~+fe2Ao[A~,  H;]++fe3Ao[A;, Iff]++. . .}U;'. (2.18) 

It is instructive to see that a further transformation 

exp(-ie3[A;, A;]) 

yields 

(2.19) 

P E +  Uo{eHf+~e2Ao[A:, H:]+-&3[A7, [A:, Hi]]+. . .}U;'. (2.20) 

This Hamiltonian was derived by Eriksen and Kolsrud using a different iterative method 
from ours. The existence of the equivalent Hamiltonians exemplifies the fact that 
diagonalisation of the Dirac equation is not unique. 

3. Restoration of gauge invariance 

We define 
s(-) = -'i U o ~ o ~ f ~ ; ' .  

From (2.14) it follows that 

s(-)  = dt 'exp[iPE(r '-  t)]H:-'exp[-iPE(r'-r)]. L 
Either of the Hamiltonians (2.18) or (2.20) is written as 

H = P E  + eH:+'+$e2[S'-', H:-' ]  +.  . . 
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(3.4) 

(3.5) 

We write them down explicitly: 

H ( + ’ =  I [ ~ E ( E  + m ) ] - ” ‘ { ( E  + m ) # ( E  + m)+a.p#a.p 
- p a . p a  - A ( E  + m ) + ( E  + m ) a *  APa .p} [2E(E  + n ~ ) ] - ’ ’ ~  (3.6) 

I+\-) = [ 2 ~  ( E + m )I-”’[ p a  p#(  E + m ) - ( E  + m )  # p a  p 

- ( E  + m)a . A ( €  + m )  + a . p a  A a  - p ] [ Z E ( E  + V I ) ] - ’  ’. 

e#+P[(p-eA)’+m’]’”+(functions of p - e A ,  B and E )  

(3.7) 

The gauge-invariant Hamiltonian must be in the form 

(3.8) 

where B and E are the magnetic and electric fields, respectively, 

B = C x A  (3.91 

E = -Vd - ( d / d t ) A .  (3.10) 

When expanded in powers of e, the third term of (3.8) begins with linear functions of 
B and E, while the second term is written as 

P [ ( p - e A ) ’ + + ’ ] ’  ’ = P E + e D , + e ’ D 2 + .  . . .  (3.11) 

Squaring both sides we find 

[ P E ,  D l ] + = - p . A - A * p  (3.12) 

[ P E ,  D211 = A ’ -  0:. (3.13) 

Using expression (3.11) we rewrite (3.3) as 

H = e# + p [ ( p  - eA)’+ m2l1’’+ e ( H \ + ’ -  4 - 0’) + e2{$[S‘- ’ ,  H i - ’ ]  - D 2 } + .  . . . (3.14) 

The main task of this paper is to see how one can make (3.14) compatible with (3.8). 
To this end we define r through 

H \ + ) - + - - D I  = [ 2 E ( E + m ) ] - ’  ’ f r [ 2 E ( E + m ) ] - ’ / ’ .  (3.15) 

After some manipulations we are led to 

r = - p [ ~  + m, U -  B ] ,  -0 F +  U .  ( p  x F - F X ~ )  

- P [ E  + m, p a  A +  A .  p ] ,  - 2 [ 2 E ( E  + m ) ] ” ’ D l [ 2 E ( E  + n ~ ) ] ’ ’ ~  

+ [ E + m ,  E # + ~ E I + - ~ [ ~ E ( E + ~ ) ] ‘ ” # [ ~ E ( E + ~ ) ~ ’ ~ ’ .  (3.16) 

F stands for the quantity 

F = -V# +$PE, A ] .  (3.17) 

As Eriksen and Kolsrud noticed, F can be converted to E by means of a unitary 
transformation. Therefore the first line in (3.16) could be made consistent with the 
requirement of gauge invariance, as we will see later. 

The most crucial step we take is to introduce an  operator L in such a way that 

i [E2 ,  L # ] = [ E + ~ ,  E # + # E ] + - ~ [ ~ E ( E + ~ ) ] ” ’ # [ ~ E ( E + ~ ) ] ’ ’ ’ .  (3.18) 
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L i s  a very complicated operator which contains p both on the left-hand and right-hand 
sides of 4. It  is most easily expressed in momentum space as given in the appendix, 
but its explicit form is not necessary for our discussion that follows. Recalling the 
definition of E we can write (3.18) as 

i[E’, ~ 4 ] = i [ p ’ ,  ~ 4 ] = ~ ( p . ~ 4 + ~ 4 . p ) .  (3.19) 

Next we make the replacement 4 +  - p * A - A . p  in (3.18). The right-hand side of 
(3.18) becomes 

- [ E  + m, [ ~ , p .  A + A  - p ] + ] + + 2 [ 2 ~ ( ~  + m)]’”(p. A + A .  P ) [ ~ E ( E  + m) ] ’ ”  

= [ P E ,  - P [ E  + m , p .  A + A  p]+ - 2 [ 2 E ( E  + m)]” ’DI [2E(E  m)]”’]+ 
(3.20) 

where we have used (3.12). On the other hand, the left-hand side of (3. 
to be 

-i[E2, ~ ( p . A + A . p ) ] = - i [ P E , [ P E ,  L ( p . A + A - p ) ] ] + .  

Comparing (3.20) with (3.21) we obtain 

- P [ E  + m, p *  A + A  .p], -2 [2E(E  + m)]”’Dl[2E(E  + m ) ] ” ’  

= -i[PE, L ( p  * A + A p ) ] .  

8) turns out 

(3.21) 

(3.22) 

It is pleasing to find that upon inserting (3.18) and (3.22) into (3.16) r contains only 
B and F :  

= - P [ E  + m, a. E ] ,  -C F - p a  ( a x  F +  L F )  - (a x F +  L F )  p .  
As a consequence we can extract a gauge-invariant part H i + ’  : 

(3.23) 

(3.24) H“’ , = H‘,” -i[S, p E ] + ( a / a t ) S  

where 

H ; + )  = ~ + o , + [ 2 ~ ( ~ + m ) ] - ~ ’ * f r ‘ [ 2 ~ ( ~ + m ) ] - ~ ’ ?  (3.25) 

r’= - P [ E  + m, - B], - v  - E - p a  ( U  x E +  L E )  -(a x E +  L E ) .  p (3.26) 

and 

s = - + [ ~ E ( E  + m ) l - ” ’ [ ~  A + p  ( U  x A + L A )  + (a x A + L A )  - E + m 
(3.27) 

We return to (3.3) and exploit the freedom to transform H by an arbitrary unitary 
transformation exp(ieS‘+’) 

(3.28) H, = e i e s l + ’ ~  e-ieS’+’- i e i eS’+’ (a / a t )  e-~e.S+’. 

Expanded in powers of e, (3.28) becomes 

H ‘ = P E  +eH\+)+ie[S‘+’ ,  P E ] - e ( a / a t ) S ‘ + ’ + t i e ’ [ S ‘ - ’ ,  H‘,-’]+ie*[S‘+’, H\+’] 

+~ie2 [ s ‘+ ’ , i [S ‘+’ ,~E] - (a /a t )S ‘” ]+ .  . . .  (3.29) 

Undesired terms in (3.24) can be eliminated by choosing S ‘ + ) =  S. That is 

H’ = PE + eH;” + $e2[ S(- ’ ,  HI-’] + fie2[ S(+’ ,  Hi’’] 

+ $e2[S‘+’, H\+) 1 + . . . . (3.30) 
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Alternatively this can be cast in the form 

H ’  = e 4  + P [ ( p  - eA)’+  m2]”* + eH’ ,  + e 2 H ; + .  . . 
where 

H :  = [ ~ E ( E +  m ) ] - ” ’ f r ’ [ 2 ~ ( ~  + m)]-1’2 

H;=$[S‘-’, H:-’]+fi[S‘+’, H\+’]+fi[S‘+’, H ’ , + 4 + D , ] - D 2 .  

(3.31) 

(3.32) 

(3.33) 

4. Comparison with Foldy and Wouthuysen 

Our electromagnetic interaction (3.31) is given in a power series of e but the l / m  
expansion is not used. It is interesting to expand (3.31) in l / m  and compare with the 
Foldy-Wouthuysen interaction. For this purpose we first derive the operator L given 
by (3.18). Expanding the right-hand side of (3.18) in l / m  we obtain 

The interaction H’,  to the required order l / m 2  is not affected by L so that 

1 1 1 
2m 8m 8m 

= -- Pu. B-FV * E -7 ( p *  U X E +  U x E * p ) .  (4.2) 

Next consider e’ terms. The first term in (3.33) comes from creation of a virtual 
particle-antiparticle pair and subsequent annihilation. Its derivation is tedious but 
straightforward. To order l / m 2  

From (3.28) S ( + )  = S is given by 

s ( + ) = - ~ ( v . A + ~ . ~ x A + u x A . ~ )  1 

so that 

1 
8m2 

$ [ S ‘ ” ,  H i + ’ ]  = -- U * AX V4 

1 
8m 

fi[S‘+’, H’,  + 4 + D,]  = -z U. A x v4. 

Note that H i  and 

P 
2m 

D 1 z - p  ( A  p + p  * A )  

did not contribute to (4.6). Finally, D2 is given by 

(4.4) 

(4.7) 

P 2  D z = - A .  
2m (4.8) 
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Collecting (4.31, (4.5), (4.6) and (4.8) we get 

1 
H i = - - -  U S A X E .  

4m 

Our final expression is 

P e 
2 m  2m 

H‘= P m  +- ( p  - eA)2+  e 4  - - P a .  B 

e e 
+y [ a .  ( p  - eA)  x E - a *  E x ( p  - e A ) ]  -7 V E. 

8m 8m 
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(4.9) 

(4.10) 

This exactly reproduces the Foldy-Wouthuysen interaction. It should be emphasised 
that the unitary transformation which made HI gauge invariant naturally entails a 
modification of H ; ,  thereby leading to the Foldy-Wouthuysen transformation. 

5. Discussion 

Starting from the Eriksen-Kolsrud interaction we derived a new representation of the 
electromagnetic interaction of a Dirac particle. I f  we are concerned with a structureless 
point particle, extraction of the explicitly gauge-invariant single-particle Hamiltonian 
from the total coupled-field Hamiltonian is only an academic problem. In  fact, the 
covariant perturbation scheme of quantum electrodynamics has been enormously 
successful. Nothing new is gained from our non-covariant Hamiltonian. 

The situation is different for a composite system consisting of constituent fermions. 
In the limit when the internal interaction among the constituent particles vanishes the 
Hamiltonian of the composite system in the presence of an  external field should be a 
sum of the diagonalised single-particle Hamiltonians. When the internal interaction 
is switched on, we have to add the terms which depend directly on the internal 
interaction. If we d o  not use the explicitly gauge-invariant single-particle Hamiltonian, 
current conservation is fulfilled only after we calculate the internal interaction terms 
consistently with the single-constituent term. This is an awkward procedure. It is more 
the case when there is no underlying well-established theory for the interaction among 
the constituents. I t  is desired that both terms are gauge invariant separately. Our 
electromagnetic interaction as well as the Foldy-Wouthuysen interaction will be useful 
in this respect. 

Appendix 

We sandwich the left-hand and right-hand sides of (3.18) between two plane wave 
states Ik) and lk’): 

where 

Ek = ( k 2 +  m2)1’2 Ek, = ( k’2 + ??I2)”*, 
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From ( A l )  we can write as 

To lowest order in l / m  expansion 
c 

Lk<, a - 2- i(k”- k’). 
16m2 

This implies that 

5 
16m’ 

( k ‘ l ~ d ( k )  = -- i(k’]p*d - dp’ lk)  

This is an  alternative proof of (4.1) in the text. 
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